Àá½Ã¸¸ ±â´Ù·Á ÁÖ¼¼¿ä. ·ÎµùÁßÀÔ´Ï´Ù.

Àý»è ¹× ÀûÃþ°¡°ø¹ýÀ¸·Î Á¦ÀÛµÈ Áö¸£ÄÚ´Ï¾Æ ¸Ö·Ð ÆÄÀý ½ÃÇè ¸ðÇüÀÇ °¡°øÁ¤È®µµ Æò°¡

Evaluation of machining accuracy of zirconia Merlon fracture test models fabricated by subtractive and additive manufacturing

´ëÇÑÄ¡°úÀç·áÇÐȸÁö 2024³â 51±Ç 1È£ p.53 ~ 61
ÀÌÈñÁ¤, ¹èÁö¸í, ¿À½ÂÇÑ,
¼Ò¼Ó »ó¼¼Á¤º¸
ÀÌÈñÁ¤ ( Lee Hee-Jung ) - 
¹èÁö¸í ( Bae Ji-Myung ) - 
¿À½ÂÇÑ ( Oh Seung-Han ) - 

Abstract

º» ¿¬±¸¿¡¼­´Â ISO 18675 (2022)¿¡ Á¦½ÃµÈ Merlon ÆÄÀý ½ÃÇè ¸ðµ¨À» ÀÌ¿ëÇÏ¿© Àý»è ¹× ÀûÃþ°¡°ø¹ýÀ¸·Î Á¦ÀÛµÈ Áö¸£ÄÚ´Ï¾Æ º¸Ã¶¹°ÀÇ °¡°øÁ¤È®µµ¸¦ Æò°¡ÇÏ¿´´Ù. Àý»è°¡°ø¹ýÀ¸·Î Á¦ÀÛµÈ ½ÃÆíÀº 2Á¾ÀÇ Áö¸£ÄÚ´Ï¾Æ°è ºí·Ï(Katana Zirconia HT; KH, Katana Zirconia STML; KS)À» »ç¿ëÇÏ¿© DWX-51D (Roland, Sydney, NSW, Australia)·Î Àý»è °¡°øÇÏ¿´´Ù. ÀûÃþ°¡°ø¹ýÀ¸·Î Á¦ÀÛµÈ ½ÃÆíÀº Áö¸£ÄÚ´Ï¾Æ ¾×»ó ½½·¯¸®(INNI-CERA; PZ)¸¦ »ç¿ëÇÏ¿© DLP ¹æ½ÄÀÇ 3D ÇÁ¸°ÅÍ INNI-¥± (AON, Gunpo, Korea)·Î ÀûÃþ °¡°øÇÏ¿´´Ù. ¸ðµ¨ ½ºÄ³³Ê(E3, 3 Shape A/S, Copenhagen, Denmark)·Î ½ºÄµÇÏ¿© Àý»è ¹× ÀûÃþ°¡°ø¹ýÀ¸·Î Á¦ÀÛµÈ ½ÃÆí¿¡¼­ ½ÃÆí STL À̹ÌÁö ÆÄÀÏÀ» ȹµæÇÏ¿´´Ù. Àý»è ¹× ÀûÃþ°¡°ø¹ýÀ¸·Î Á¦ÀÛµÈ ½ÃÆíÀÇ °¡°øÁ¤È®µµ Æò°¡´Â 3Â÷¿ø À̹ÌÁö ºÐ¼® ¼ÒÇÁÆ®¿þ¾î(Geomagic Control X, 3D Systems, Rock Hill, SC, USA)¿¡¼­ ÂüÁ¶ STL À̹ÌÁö¿Í ½ÃÆí STL À̹ÌÁö¸¦ ÁßøÇÏ¿© »ïÂ÷¿ø Áßø¹æ¹ýÀ¸·Î »êÃâµÈRMS°ªÀ¸·Î ºÐ¼®ÇÏ¿´´Ù. Á¦Á¶ ½ÃÆíµéÀÇ °¡°øÁ¤È®µµ Æò°¡ °á°ú, KH¿Í KS ±ºÀÌ PZ ±ºº¸´Ù Åë°èÀûÀ¸·Î À¯ÀÇÇÏ°Ô ¿ì¼öÇÑ °¡°øÁ¤È®µµ(³·Àº RMS)¸¦ ³ªÅ¸³»¾ú´Ù(P<0.05). KH¿Í KS ±ºÀº µÎ²²°¡ ¾ã¾ÆÁú¼ö·Ï ³ôÀº °¡°øÁ¤È®µµ¸¦ ³ªÅ¸³»¾ú°í, 0.2 mm ¹× 0.3 mm ½ÇÇ豺Àº 0.4 mm ½ÇÇ豺º¸´Ù Åë°èÀûÀ¸·Î À¯ÀÇÇÏ°Ô ¿ì¼öÇÑ °¡°øÁ¤È®µµ¸¦ ³ªÅ¸³»¾ú´Ù(P<0.05). ¹Ý¸é¿¡, PZ±ºÀº µÎ²²°¡ µÎ²¨¿öÁú¼ö·Ï ¿ì¼öÇÑ °¡°øÁ¤È®µµ¸¦ ³ªÅ¸³ÂÀ¸¸ç, 0.4 mm ½ÇÇ豺ÀÌ 0.2 mm ¹× 0.3 mm ½ÇÇ豺º¸´Ù Åë°èÀûÀ¸·Î À¯ÀÇÇÏ°Ô ¿ì¼öÇÑ °¡°øÁ¤È®µµ¸¦ ³ªÅ¸³»¾ú´Ù(P<0.05). Á¦ÇÑµÈ ½ÇÇè Á¶°Ç ³»¿¡¼­, ÀûÃþ°¡°ø¹ýÀ¸·Î ÃÖÁ¾ Áö¸£ÄÚ´Ï¾Æ º¸Ã¶¹°À» Á¦ÀÛÇÒ ¶§ Ä¡°úÀÓ»ó¿¡¼­ Àû¿ë °¡´ÉÇÑ µÎ²²´Â ÃÖ¼Ò 0.4 mm ÀÌ»óÀ¸·Î Á¦ÀÛÇÒ °ÍÀ» Á¦¾ÈÇÑ´Ù.

The machining accuracy of zirconia prostheses fabricated by the subtractive (SM) and additive manufacturing (AM) was evaluated using the Merlon fracture test model in ISO 18675 (2022). The SM specimens were fabricated by a DWX-51D (Roland, Sydney, NSW, Australia) using two zirconia blocks (Katana Zirconia HT; KH, Katana Zirconia STML; KS). The AM specimens were prepared by a DLP type 3D printer INNI-¥± (AON, Gunpo, Korea) using zirconia liquid slurry (INNI-CERA; PZ). The specimen STL image was acquired using a model scanner (E3, 3 Shape A/S, Copenhagen, Denmark). The machining accuracy of the specimens was analyzed by the RMS method superimposing the reference STL image and the specimen STL image in image analysis software (Geomagic Control X, 3D Systems, Rock Hill, SC, USA). From the results of the machining accuracy analysis, the KH and KS groups showed statistically significantly better machining accuracy (lower RMS) than the PZ group (P<0.05). The KH and KS groups showed higher machining accuracy as the thickness decreased, and the 0.2 mm and 0.3 mm experimental groups showed statistically significantly better machining accuracy than the 0.4 mm experimental group (P<0.05). On the other hand, the PZ group showed better machining accuracy as the thickness increased, with the 0.4 mm group showing statistically significantly better machining accuracy than the 0.2 mm and 0.3 mm groups (P<0.05). Within the limitation of this study, the thickness of the final zirconia prosthesis fabricated by additive manufacturing should be at least 0.4 mm for clinical use in dentistry.

Å°¿öµå

Merlon ÆÄÀý ½ÃÇè ¸ðµ¨; Àý»è°¡°ø; ÀûÃþ°¡°ø; Áö¸£ÄڴϾÆ; °¡°øÁ¤È®µµ
Merlon fracture test model; Subtractive manufacturing; Additive manufacturing; Zirconia; Machining accuracy

¿ø¹® ¹× ¸µÅ©¾Æ¿ô Á¤º¸

 

µîÀçÀú³Î Á¤º¸